Math 2270, Midterm 2 May 2nd, 2022

PRINT YOUR NAME: _____

Question	Points	Score	
1	10		
2	10		
3	10		
4	10		
5	10		
6	10		
7	10		
8	10		
9	10		
10	10		
11	10		
Total:	110		

- No advanced calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated.
- You have 110 minutes and the exam is 110 points.
- You do not need to simplify numerical expressions. For example leave fractions like 100/7 or expressions like $\ln(3)/2$ as is.
- Do the best you can!

Midterm 2

- Math 2270
- 1. (10 points) For each problem, fill in the blank with your answer or circle "Not enough info" if there is not enough information to answer the question.
 - 1. The linear system of equations $A\vec{x} = \vec{b}$ corresponds to the augmented matrix

$$\begin{bmatrix} 2 & -2 & 4 & 0 \\ -3 & 0 & -15 & -6 \\ 3 & 0 & 15 & 6 \end{bmatrix}$$

with reduced row echelon form (RREF)

Γ	1	0	5	2	
	0	1	3	2	
	0	0	0	0	

How many solutions does $A\vec{x} = \vec{b}$ have? Circle your answer.

(i) 0 (ii) 1 (iii) ∞ (iv) Not enough info

2. Let $f : \mathbb{R}^4 \to \mathbb{R}^3$ be the linear map defined by multiplying by the matrix A:

$$A = \begin{bmatrix} -2 & 10 & 1 & 2 \\ -4 & 20 & 0 & 2 \\ 1 & -5 & 3 & -3 \end{bmatrix}.$$

That is, $f(\vec{x}) = A\vec{x}$. The reduced row echelon form (RREF) of A is

$$\begin{bmatrix} 1 & -5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Is f onto, one-to-one, an isomorphism, or none of the above? Circle the best answer – if f is an isomorphism, do not circle onto or one-to-one.

3. Which of the matrices is NOT invertible? Circle your answer.

$$(i)\begin{bmatrix}1 & 0\\ 4 & -1\end{bmatrix} \qquad (ii)\begin{bmatrix}-1 & -4\\ 1 & 3\end{bmatrix} \qquad (iii)\begin{bmatrix}-2 & -5\\ -1 & -3\end{bmatrix} \qquad (iv)\begin{bmatrix}6 & -3\\ 10 & -5\end{bmatrix}$$

4. What is the angle θ between the vectors \vec{u} and \vec{v} ?

$$\vec{u} = \begin{bmatrix} 3 - \sqrt{15} \\ 0 \\ 123 \end{bmatrix}, \qquad \vec{v} = \begin{bmatrix} -123 \\ 11 \\ 3 - \sqrt{15} \end{bmatrix}.$$
$$\theta = \underline{\qquad} \qquad \text{Not enough info}$$

5. Consider the matrix

$$A = \begin{bmatrix} -9 & -4 \\ 6 & 1 \end{bmatrix}$$

as a matrix with coefficients in $\mathbb{F}_5 = \mathbb{Z}/5$. Is it invertible? Does there exist a matrix A^{-1} with entries in \mathbb{F}_5 such that $A^{-1}A = I_2$ as matrices with coefficients in \mathbb{F}_5 ?

Invertible Not Invertible

Solve the system of linear equations. Find the general solution in parametric form.

$$2x_1 + 4x_2 - 2x_3 = -12$$
$$x_1 + 2x_2 + 6x_3 = 1$$
$$-5x_1 - 10x_2 = 25$$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \underline{\qquad}$$

3. (10 points) \square Skip

Write

- $M_2(\mathbb{R})$ for the vector space of 2×2 matrices,
- \mathbb{P}_2 for the vector space of polynomials in a single variable t with degree at most 2,
- V for the vector space of continuous functions $g : \mathbb{R} \to \mathbb{R}$.

Which of the maps are linear? Circle your answer

1.
$$f : \mathbb{R}^3 \to \mathbb{R}, f(\vec{x}) = ||\vec{x}|| = \sqrt{\vec{x} \cdot \vec{x}}.$$

Linear Not linear

2.
$$f: M_2(\mathbb{R}) \to \mathbb{R}, f(A) = \det A.$$

Linear Not linear

3. Fix $B \neq 2 \times 2$ matrix. Define $f : M_2(\mathbb{R}) \to M_2(\mathbb{R})$ by f(A) = AB - BA. Linear Not linear

4. Fix p(t) in \mathbb{P}_2 . Define $f : \mathbb{P}_2 \to \mathbb{P}_2$ by f(q(t)) = 3q(t) - 2p'(t).

Linear Not linear

5. $f: V \to \mathbb{R}$ defined by f(g) = g(0).

Linear Not linear

Decide whether the linear system of equations $A\vec{x} = \vec{b}$ has a solution. If so, find the general solution.

If not, find the least squares solutions.

$$A = \begin{bmatrix} 4 & 0 \\ -2 & 0 \\ 2 & 1 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 3 \\ -4 \\ -2 \end{bmatrix}$$

Does the system $A\vec{x} = \vec{b}$ have a solution?

Yes No

Least squares/Solution:

Find a basis of solutions $\vec{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$ to the Matrix differential equation:

$$x_1' = x_1 + 4x_2$$
$$x_2' = -2x_1 + 7x_2$$

Basis of solutions:

6. (10 points) \square Skip

Define a function $f : \mathbb{R}^3 \to \mathbb{R}$ that sends a vector $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ to the determinant of the matrix $\begin{bmatrix} a & 3 & 0 \\ b & -2 & -6 \\ c & 1 & 3 \end{bmatrix}$.

This function is linear. Find the matrix B for this function using the standard bases on \mathbb{R}^3 and \mathbb{R} .

B

7. (10 points) \square Skip

Find the change of basis matrix $\underset{C \leftarrow B}{P}$ that rewrites a vector $[\vec{x}]_B$ in B coordinates in terms of C coordinates $[\vec{x}]_C$.

$$B = \left\{ \begin{bmatrix} 1\\ -7 \end{bmatrix}, \begin{bmatrix} 0\\ -12 \end{bmatrix} \right\}$$
$$C = \left\{ \begin{bmatrix} -3\\ -3 \end{bmatrix}, \begin{bmatrix} 2\\ -2 \end{bmatrix} \right\}.$$

Find a basis for the Null space and Column space for the matrix A.

$$A = \begin{bmatrix} -5 & -15 & 1 & 4 \\ 1 & 3 & -2 & -5 \\ -1 & -3 & -1 & 2 \end{bmatrix}$$

Basis for Nul A:

Basis for Col A:

Use the Gram-Schmidt process to replace the given basis by an orthogonal basis.

$$\left\{ \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} 5\\-1\\3 \end{bmatrix}, \begin{bmatrix} 3\\7\\5 \end{bmatrix} \right\}$$

Orthogonal Basis:

Let W be the subspace spanned by the vectors

$$\begin{bmatrix} -3\\12\\2\\-11 \end{bmatrix}, \begin{bmatrix} -1\\4\\1\\-5 \end{bmatrix}.$$

Find a basis for the orthogonal complement W^{\perp} of W.

Basis for W^{\perp} :

Find the inverse A^{-1} of the matrix A:

$$A = \begin{bmatrix} 8 & -4 & -9 \\ -5 & 3 & 6 \\ 2 & -1 & -2 \end{bmatrix}$$

