Worksheet 2

_____ Name:

Score:

1. Fill in the blanks in the table:

n vectors in \mathbb{R}^m	$m \times n$ Matrix	Linear $f : \mathbb{R}^n \to \mathbb{R}^m$
$\{v_1,\ldots,v_n\}$		
linearly indep		
$\operatorname{Span}(v_1,\ldots,v_n) = \mathbb{R}^m$		
Basis for \mathbb{R}^m		

2. When is a subset H of vectors in \mathbb{R}^n a subspace? Give three examples of subspaces.

- 3. Give three ways of checking that a 3×3 matrix A is invertible.
- 4. Is the set of vectors linearly independent?

$$\begin{bmatrix} -10\\ -5\\ -1\\ -9 \end{bmatrix}, \begin{bmatrix} -10\\ -8\\ 6\\ -3 \end{bmatrix}, \begin{bmatrix} -5\\ 5\\ 4\\ 1 \end{bmatrix}$$

5. Does the set of vectors span \mathbb{R}^3 ?

$$\begin{bmatrix} -5\\5\\-4 \end{bmatrix} \begin{bmatrix} -3\\-4\\-1 \end{bmatrix} \begin{bmatrix} -22\\29\\-19 \end{bmatrix} \begin{bmatrix} 19\\2\\11 \end{bmatrix}$$

6. Are the vectors linearly independent?

$$\begin{bmatrix} 1\\1\\1\\4 \end{bmatrix}, \begin{bmatrix} 2\\9\\2\\-3 \end{bmatrix}, \begin{bmatrix} -2\\-10\\2\\2 \end{bmatrix},$$

7. Find the inverses:

(a)
$$\begin{bmatrix} -2 & 5\\ -1 & 2 \end{bmatrix}$$

(b) $\begin{bmatrix} 3 & 3 & -2\\ 1 & 0 & 4\\ 4 & 4 & -3 \end{bmatrix}$

8. Find a basis for the Column space:

(a)

$$\begin{bmatrix} 7 & -2 & 1 & -14 \\ 9 & -3 & 0 & -24 \\ -15 & 5 & -1 & 37 \end{bmatrix}$$
(b)

$$\begin{bmatrix} -3 & -9 & -45 & -39 \\ -1 & -3 & -15 & -13 \\ 3 & 6 & 33 & 27 \end{bmatrix}$$

9. Find a basis for the null space

(a)		$\begin{bmatrix} -\\ 2 \end{bmatrix}$	-2 6	$\begin{array}{ccc} 0 & - \\ 5 & 6 \end{array}$	$\begin{bmatrix} \cdot 2 \\ 5 \end{bmatrix}$
(b)		$\begin{bmatrix} -1\\ 0\\ -3 \end{bmatrix}$	$ \begin{array}{c} 3 \\ 0 \\ 9 \end{array} $	$-1 \\ 1 \\ 7$	-4 4 28