Worksheet 3A

Name: \qquad Score: \qquad

Consider two bases, \mathcal{B} and \mathcal{C} for \mathbb{R}^{2} or \mathbb{R}^{3} and a vector $[\vec{x}]_{\mathcal{B}}$ in \mathcal{B} coordinates. Find the change of basis matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ and rewrite the vector in \mathcal{C} coordinates.
1.

$$
\begin{gathered}
\mathcal{C}=\left\{\left[\begin{array}{l}
-2 \\
-2
\end{array}\right],\left[\begin{array}{l}
-1 \\
-3
\end{array}\right]\right\} \quad \mathcal{B}=\left\{\left[\begin{array}{l}
3 \\
1
\end{array}\right],\left[\begin{array}{c}
-8 \\
-12
\end{array}\right]\right\} \\
{[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}
-2 \\
13
\end{array}\right]}
\end{gathered}
$$

2.

$$
\begin{gathered}
\mathcal{C}=\left\{\left[\begin{array}{c}
0 \\
-3
\end{array}\right],\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right\} \quad \mathcal{B}=\left\{\left[\begin{array}{c}
4 \\
-9
\end{array}\right],\left[\begin{array}{c}
-1 \\
6
\end{array}\right]\right\} \\
{[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}
-17 \\
20
\end{array}\right]}
\end{gathered}
$$

3.

$$
\begin{gathered}
\mathcal{C}=\left\{\left[\begin{array}{l}
4 \\
0
\end{array}\right],\left[\begin{array}{c}
-12 \\
3
\end{array}\right]\right\} \quad \mathcal{B}=\left\{\left[\begin{array}{c}
16 \\
-3
\end{array}\right],\left[\begin{array}{c}
-16 \\
3
\end{array}\right]\right\} \\
{[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}
-23 \\
14
\end{array}\right]}
\end{gathered}
$$

4.

$$
\begin{gathered}
\mathcal{C}=\left\{\left[\begin{array}{c}
-2 \\
4
\end{array}\right],\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right\} \quad \mathcal{B}=\left\{\left[\begin{array}{c}
-6 \\
9
\end{array}\right],\left[\begin{array}{c}
4 \\
-9
\end{array}\right]\right\} \\
{[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}
-13 \\
11
\end{array}\right]}
\end{gathered}
$$

5.

$$
\begin{gathered}
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]\right\} \quad \mathcal{C}=\left\{\left[\begin{array}{c}
-3 \\
2 \\
-3
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{l}
5 \\
4 \\
9
\end{array}\right]\right\} \\
{[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}
-1 \\
0 \\
4
\end{array}\right]}
\end{gathered}
$$

6. Is it always true that

$$
[c . \vec{x}]_{\mathcal{B}}=c[\vec{x}]_{\mathcal{B}}
$$

and

$$
[\vec{x}+\vec{y}]_{\mathcal{B}}=[\vec{x}]_{\mathcal{B}}+[\vec{y}]_{\mathcal{B}} ?
$$

That is, is the process of rewriting vectors in a new coordinate system \mathcal{B} a linear map?
7. Find the change of basis matrix from \mathcal{B} to \mathcal{C} for two bases for the vector space \mathbb{P}_{2} of polynomials of degree up to 2 .

$$
\mathcal{B}=\left\{x^{2}+x+1, x^{2}+1, x-1\right\} \quad \mathcal{C}=\left\{2 x^{2}+3 x+1,2 x^{2}+2 x+1,-x^{2}-2\right\}
$$

Use it to write the polynomial

$$
p(x)=1\left(x^{2}+x+1\right)+2\left(x^{2}+1\right)+3(x-1)
$$

in the new basis \mathcal{C}.
8. What are the columns of the matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$? Hint: think of the matrix as the composite $P_{\mathcal{C}}^{-1} P_{\mathcal{B}}$. What are the columns of $P_{\mathcal{B}}$? What happens when you apply $P_{\mathcal{C}}^{-1}$ to them?
9. Suppose I want to convert from a basis \mathcal{A} to a basis \mathcal{C} and I already know the matrices

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} \quad \underset{\mathcal{B} \leftarrow \mathcal{A}}{P} .
$$

How do I find $\underset{\mathcal{C} \leftarrow \mathcal{A}}{P}$?
10. Which matrices are change-of-basis matrices $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$? Are all matrices change-of-basis matrices?

