Worksheet 3

Name: \qquad Score: \qquad

1. Let $f: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ be the linear map from polynomials of degree less than or equal to 2 to the plane defined by

$$
f(p(t))=\left[\begin{array}{c}
p^{\prime}(1)-p^{\prime \prime}(2) \\
\int_{0}^{1} p(t) d t
\end{array}\right] .
$$

Here $p^{\prime}(t), p^{\prime \prime}(t)$ are the first and second derivative and $\int_{0}^{1}-d t$ is the definite integral. Write f as a matrix with respect to the standard basis on \mathbb{R}^{2} and the basis $\left\{1, t, t^{2}\right\}$ for \mathbb{P}_{2}.

$$
[f]=\left[\begin{array}{lll}
\square & \square & \square
\end{array}\right.
$$

2. Write the change-of-basis matrix $\underset{\mathscr{C} \leftarrow \mathscr{B}}{P}$ for each pair of bases for \mathbb{R}^{2} :
(a)

$$
\begin{aligned}
\mathscr{B} & =\left\{\left[\begin{array}{c}
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
5 \\
-3
\end{array}\right]\right\} \\
\mathscr{C} & =\left\{\left[\begin{array}{l}
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right\}
\end{aligned}
$$

$$
\underset{\mathscr{C} \leftarrow \mathscr{B}}{P}=[\square]
$$

(b)

$$
\begin{aligned}
\mathscr{B} & =\left\{\left[\begin{array}{c}
4 \\
-3
\end{array}\right],\left[\begin{array}{c}
3 \\
-2
\end{array}\right]\right\} \\
\mathscr{C} & =\left\{\left[\begin{array}{l}
-1 \\
-1
\end{array}\right],\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]\right\}
\end{aligned}
$$

$$
\underset{\mathscr{C} \leftarrow \mathscr{B}}{P}=\left[\begin{array}{ll}
\square & \square
\end{array}\right]
$$

