Worksheet 6

Name: \qquad Score: \qquad

1. Let W be the subspace spanned by the vectors. Find a basis for the orthogonal complement W^{\perp} of W.
(a)

$$
\left[\begin{array}{c}
-5 \\
-25 \\
-1 \\
24
\end{array}\right], \quad\left[\begin{array}{c}
4 \\
20 \\
1 \\
-19
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{c}
-3 \\
-15 \\
-15 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
2 \\
10 \\
10 \\
1
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{c}
0 \\
4 \\
0 \\
16
\end{array}\right], \quad\left[\begin{array}{c}
4 \\
-5 \\
3 \\
2
\end{array}\right], \quad\left[\begin{array}{c}
-2 \\
-2 \\
2 \\
-12
\end{array}\right] .
$$

2. Decide whether the linear system of equations $A \vec{x}=\vec{b}$ has a solution. If not, find a least squares solution.
(a)

$$
A=\left[\begin{array}{cc}
-3 & 1 \\
0 & 1 \\
0 & 2
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
-2 \\
-2 \\
3
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{cc}
2 & 1 \\
-4 & -3 \\
2 & 1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
2 \\
-4 \\
-2
\end{array}\right]
$$

(c)

$$
A=\left[\begin{array}{cc}
2 & 1 \\
-4 & -5 \\
-1 & -1 \\
-2 & 2
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
5 \\
3 \\
3 \\
-4
\end{array}\right]
$$

