Worksheet ∞

Name: \qquad Score: \qquad

1 Topics

1. For each topic, explain: what is it? how do you find it or do it? what does it mean? What is its use and what does it do? Give examples.

- row echelon form and reduced row echelon form ((R)REF)
- How to solve a system of linear equations. When is a linear system of equations consistent or inconsistent?
- linear combinations
- the span $\operatorname{Span}\left(v_{1}, \ldots, v_{p}\right)$ of a set of vectors (and how to find a basis for it)
- when is a vector \vec{b} in the span Span $\left(v_{1}, \ldots, v_{p}\right)$ of some other vectors?
- When does a set of vectors $\left\{v_{1}, \ldots, v_{p}\right\}$ span all of \mathbb{R}^{n} ? When is it linearly independent? How do you check and what does it mean?
- linear functions
- one to one/onto/isomorphism. How to check if a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one of them?
- The matrix of a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Give examples, such as rotation, projection, the identity matrix, etc. Draw pictures.
- matrix multiplication, in particular multiplying a vector by a matrix and composition of linear functions
- subspaces
- bases
- the null space, column space of a matrix A. (and how to find bases for them)
- inverses (general formula and the 2 x 2 case). How to use A^{-1} to solve $A \vec{x}=\vec{b}$. When is a matrix invertible?
- determinants (general formula and the 2×2 case)
- Change of basis on \mathbb{R}^{n}.
- General vector spaces V. Give examples: $\mathbb{P}_{2}, \mathbb{P}_{n}, \mathbb{P}$, continuous/differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$, the vector space of all 3 x 2 matrices, etc.
- the coordinates of a vector \vec{v} in V in a basis B for V.
- The matrix of a linear map $f: V \rightarrow W$ between general vector spaces. (need to choose bases for V and W) Give examples, such as the derivative, integral, or indefinite integral of the vector space of polynomials
- eigenvalues and eigenvectors
- diagonalizing matrices
- Matrix differential equations $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and initial value problems where $\vec{x}(0)$ is given
- Complex numbers \mathbb{C} and complex eigenvalues/vectors
- The dot product
- The length of a vector \vec{u} and the angle between two vectors \vec{u}, \vec{v} in \mathbb{R}^{n}.
- orthogonal and orthonormal sets $\left\{v_{1}, \ldots, v_{p}\right\}$ of vectors
- The orthogonal complement W^{\perp} of a subspace W of \mathbb{R}^{n}. How to find a basis for it? $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$. (This and least squares were our only uses of the transpose)
- the Gram Schmidt process
- Least squares solutions to $A \vec{x}=\vec{b}$. (multiply by $A^{T}: A^{T} A \vec{x}=A^{T} \vec{b}$.)
- Anything I forgot?

Some problems:
2. Find a basis of solutions for the Matrix differential equation

$$
\begin{aligned}
& x_{1}^{\prime}=2 x_{1}-2 x_{2} \\
& x_{2}^{\prime}=4 x_{1}-4 x_{2}
\end{aligned}
$$

Eigenvalues and vectors:
3. Find the angle between the two vectors. Find the length of each vector.

$$
\begin{array}{cc}
{\left[\begin{array}{c}
13 \\
-2
\end{array}\right],} & {\left[\begin{array}{c}
2 \\
13
\end{array}\right]} \\
{\left[\begin{array}{c}
1 \\
-1
\end{array}\right],} & {\left[\begin{array}{c}
\sqrt{6}+\sqrt{2} \\
\sqrt{6}-\sqrt{2}
\end{array}\right]} \\
{\left[\begin{array}{c}
3 \\
0 \\
-2
\end{array}\right],} & {\left[\begin{array}{c}
0 \\
-13 \\
0
\end{array}\right]}
\end{array}
$$

4. Is the vector \vec{b} in the span of the other vectors?

$$
\begin{gathered}
\vec{b}=\left[\begin{array}{c}
-22 \\
5 \\
-5
\end{array}\right] \\
{\left[\begin{array}{c}
-6 \\
1 \\
-1
\end{array}\right] \quad\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]\left[\begin{array}{c}
10 \\
1 \\
-1
\end{array}\right]} \\
\vec{b}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] \\
{\left[\begin{array}{c}
2 \\
-5 \\
1
\end{array}\right] \quad\left[\begin{array}{c}
-1 \\
0 \\
-5
\end{array}\right] \quad\left[\begin{array}{c}
-10 \\
25 \\
-5
\end{array}\right]}
\end{gathered}
$$

5. Find the determinants

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
45 & 12 & 12 \\
-48 & -13 & -12 \\
-12 & -3 & -4
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
6 & 38 & 46 \\
0 & 2 & 4 \\
-1 & -8 & -11
\end{array}\right]}
\end{aligned}
$$

Determinant:
6. Find the inverses
-

$$
\left[\begin{array}{cc}
1 & 3 \\
-1 & -2
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
-4 & -3 \\
-1 & -1
\end{array}\right]
$$

Inverse:
7. Are the vectors

$$
\left[\begin{array}{c}
1 \\
-1 \\
-3 \\
-6
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
-7 \\
3 \\
-6
\end{array}\right], \quad\left[\begin{array}{c}
7 \\
-6 \\
4 \\
-2
\end{array}\right],
$$

linearly independent?
8. Do the vectors

$$
\left[\begin{array}{l}
-2 \\
-2 \\
-9
\end{array}\right] \quad\left[\begin{array}{c}
0 \\
-2 \\
-1
\end{array}\right] \quad\left[\begin{array}{c}
4 \\
4 \\
18
\end{array}\right] \quad\left[\begin{array}{c}
-4 \\
-8 \\
-20
\end{array}\right]
$$

span \mathbb{R}^{3} ?
9. Find a basis for the null space and column space of the matrix

$$
\left[\begin{array}{cccc}
0 & -9 & 9 & 36 \\
-2 & 2 & -10 & -6 \\
5 & 4 & 16 & -21
\end{array}\right]
$$

10. Find a basis for the span of the vectors:

$$
\left[\begin{array}{c}
4 \\
0 \\
-2
\end{array}\right] \quad\left[\begin{array}{c}
0 \\
-2 \\
-5
\end{array}\right] \quad\left[\begin{array}{l}
8 \\
2 \\
1
\end{array}\right] \quad\left[\begin{array}{c}
-4 \\
3 \\
2
\end{array}\right]
$$

11. Find the change of basis matrix to get from B to C :

$$
\begin{gathered}
B=\left[\begin{array}{c}
-5 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
17 \\
1
\end{array}\right], \\
C=\left[\begin{array}{c}
-5 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
-2 \\
-4
\end{array}\right]
\end{gathered}
$$

12. Let W be the subspace spanned by the vectors

$$
\left[\begin{array}{c}
2 \\
0 \\
3 \\
-9
\end{array}\right], \quad\left[\begin{array}{c}
-1 \\
0 \\
-3 \\
12
\end{array}\right] .
$$

Find a basis for the orthogonal complement W^{\perp} of W.
13. Find the eigenvalues and eigenvectors:

$$
\left[\begin{array}{cc}
7 & -12 \\
2 & -3
\end{array}\right]
$$

14. Diagonalize the matrix:

$$
\left[\begin{array}{cc}
-5 & 9 \\
-6 & 10
\end{array}\right]
$$

