Write \(A = P C P^{-1}\) for the matrix \[A = \begin{bmatrix} 12 & 10 \\ -17 & -14 \end{bmatrix},\] with \(C\) a rotation matrix corresponding to a complex eigenvalue \(\lambda = a + b i\).
Click for answer
Click for Latex code
Write \(A = P C P^{-1}\) for the matrix
\[A = \begin{bmatrix}
12 & 10 \\
-17 & -14
\end{bmatrix},\]
with \(C\) a rotation matrix corresponding to a complex eigenvalue \(\lambda = a + b i\).
\begin{solution}
Solution:
\[\lambda = -1 - 1i\]
\[C = \begin{bmatrix}
-1 & -1 \\
1 & -1
\end{bmatrix}\]
\[A = \begin{bmatrix}
-3 & 1 \\
4 & -1
\end{bmatrix} \begin{bmatrix}
-1 & -1 \\
1 & -1
\end{bmatrix} \begin{bmatrix}
1 & 1 \\
4 & 3
\end{bmatrix}\]
\end{solution}