Write \(A = P C P^{-1}\) for the matrix \[A = \begin{bmatrix} 2 & -4 \\ 2 & 6 \end{bmatrix},\] with \(C\) a rotation matrix corresponding to a complex eigenvalue \(\lambda = a + b i\).
Click for answer
Click for Latex code
Write \(A = P C P^{-1}\) for the matrix
\[A = \begin{bmatrix}
2 & -4 \\
2 & 6
\end{bmatrix},\]
with \(C\) a rotation matrix corresponding to a complex eigenvalue \(\lambda = a + b i\).
\begin{solution}
Solution:
\[\lambda = 4 - 2i\]
\[C = \begin{bmatrix}
4 & -2 \\
2 & 4
\end{bmatrix}\]
\[A = \begin{bmatrix}
-1 & 1 \\
0 & -1
\end{bmatrix} \begin{bmatrix}
4 & -2 \\
2 & 4
\end{bmatrix} \begin{bmatrix}
-1 & -1 \\
0 & -1
\end{bmatrix}\]
\end{solution}