Write \(A = P C P^{-1}\) for the matrix \[A = \begin{bmatrix} -12 & 5 \\ -13 & 4 \end{bmatrix},\] with \(C\) a rotation matrix corresponding to a complex eigenvalue \(\lambda = a + b i\).
Click for answer
Click for Latex code
Write \(A = P C P^{-1}\) for the matrix
\[A = \begin{bmatrix}
-12 & 5 \\
-13 & 4
\end{bmatrix},\]
with \(C\) a rotation matrix corresponding to a complex eigenvalue \(\lambda = a + b i\).
\begin{solution}
Solution:
\[\lambda = -4 + 1i\]
\[C = \begin{bmatrix}
-4 & 1 \\
-1 & -4
\end{bmatrix}\]
\[A = \begin{bmatrix}
-1 & 2 \\
-2 & 3
\end{bmatrix} \begin{bmatrix}
-4 & 1 \\
-1 & -4
\end{bmatrix} \begin{bmatrix}
3 & -2 \\
2 & -1
\end{bmatrix}\]
\end{solution}