Let \(W\) be the subspace spanned by the vectors \[ \begin{bmatrix} 2 \\ 0 \\ 0 \\ 4 \end{bmatrix}, \qquad \begin{bmatrix} 3 \\ -3 \\ 3 \\ -9 \end{bmatrix}.\] Find a basis for the orthogonal complement \(W^\perp\) of \(W\).
Click for answer
Click for Latex code
Let \(W\) be the subspace spanned by the vectors \[ \begin{bmatrix} 2 \\ 0 \\ 0 \\ 4 \end{bmatrix}, \qquad \begin{bmatrix} 3 \\ -3 \\ 3 \\ -9 \end{bmatrix}.\] Find a basis for the orthogonal complement \(W^\perp\) of \(W\).
\begin{solution} Solution: Let \(A\) be the matrix with columns the above vectors: \[\begin{bmatrix} 2 & 3 \\ 0 & -3 \\ 0 & 3 \\ 4 & -9 \end{bmatrix}\] Reduced row echelon form (RREF) of \(A^T\): \[\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & -1 & 5 \end{bmatrix}\] Basis for \(W^\perp = (\textrm{Col}A)^\perp = \textrm{Nul} A^T\): \[\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} -2 \\ -5 \\ 0 \\ 1 \end{bmatrix}.\] \end{solution}