Find a basis for the null space of the matrix
\[\begin{bmatrix} -3 & 3 & 0 & 2 \\ 2 & -2 & -2 & -5 \\ -5 & 5 & 0 & 4 \end{bmatrix}.\]Click for answer
Click for Latex code
\[ \begin{bmatrix} -3 & 3 & 0 & 2 \\ 2 & -2 & -2 & -5 \\ -5 & 5 & 0 & 4 \end{bmatrix} \]Solution:
\begin{solution} Reduced Row Echelon Form: \[\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}\] Basis: \[\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \qquad \] \end{solution}