Write \(A = P C P^{-1}\) for the matrix \[A = \begin{bmatrix} -6 & -2 \\ 4 & -2 \end{bmatrix},\] with \(C\) a rotation matrix corresponding to a complex eigenvalue \(\lambda = a + b i\).
Click for answer
Click for Latex code
Write \(A = P C P^{-1}\) for the matrix \[A = \begin{bmatrix} -6 & -2 \\ 4 & -2 \end{bmatrix},\] with \(C\) a rotation matrix corresponding to a complex eigenvalue \(\lambda = a + b i\).
\begin{solution} Solution: \[\lambda = -4 + 2i\] \[C = \begin{bmatrix} -4 & 2 \\ -2 & -4 \end{bmatrix}\] \[A = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} -4 & 2 \\ -2 & -4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}\] \end{solution}