Decide whether the linear system of equations \(A \vec{x} = \vec{b}\) has a solution. Then find a least squares solution. \[A = \begin{bmatrix} -4 & -3 \\ 1 & 2 \\ 3 & 0 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix}\]
Click for answer
Click for Latex code
Decide whether the linear system of equations \(A \vec{x} = \vec{b}\) has a solution.
Then find a least squares solution.
\[A = \begin{bmatrix}
-4 & -3 \\
1 & 2 \\
3 & 0
\end{bmatrix}, \qquad
\vec{b} = \begin{bmatrix}
4 \\
0 \\
3
\end{bmatrix}\]
\begin{solution}
Solution:
The system \(A \vec{x} = \vec{b}\) does not have solutions. The normal equations are:
\[A^T A = \begin{bmatrix}
26 & 14 \\
14 & 13
\end{bmatrix}\]
\[A^T \vec{b} = \begin{bmatrix}
-7 \\
-12
\end{bmatrix}\]
The reduced row echelon form (RREF) of \(A^TA \vec{x} = A^T\vec{b}\) is
\[\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & -1
\end{bmatrix}\]
\end{solution}