Decide whether the linear system of equations \(A \vec{x} = \vec{b}\) has a solution. Then find a least squares solution. \[A = \begin{bmatrix} -2 & 3 \\ -2 & 0 \\ -1 & -2 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} -1 \\ -5 \\ -5 \end{bmatrix}\]
Click for answer
Click for Latex code
Decide whether the linear system of equations \(A \vec{x} = \vec{b}\) has a solution. Then find a least squares solution. \[A = \begin{bmatrix} -2 & 3 \\ -2 & 0 \\ -1 & -2 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} -1 \\ -5 \\ -5 \end{bmatrix}\]
\begin{solution} Solution: The system \(A \vec{x} = \vec{b}\) does not have solutions. The normal equations are: \[A^T A = \begin{bmatrix} 9 & -4 \\ -4 & 13 \end{bmatrix}\] \[A^T \vec{b} = \begin{bmatrix} 17 \\ 7 \end{bmatrix}\] The reduced row echelon form (RREF) of \(A^TA \vec{x} = A^T\vec{b}\) is \[\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}\] \end{solution}