Decide whether the linear system of equations \(A \vec{x} = \vec{b}\) has a solution. Then find a least squares solution. \[A = \begin{bmatrix} -4 & 1 \\ -2 & -2 \\ -2 & -3 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}\]
Click for answer
Click for Latex code
Decide whether the linear system of equations \(A \vec{x} = \vec{b}\) has a solution.
Then find a least squares solution.
\[A = \begin{bmatrix}
-4 & 1 \\
-2 & -2 \\
-2 & -3
\end{bmatrix}, \qquad
\vec{b} = \begin{bmatrix}
1 \\
-3 \\
1
\end{bmatrix}\]
\begin{solution}
Solution:
The system \(A \vec{x} = \vec{b}\) does not have solutions. The normal equations are:
\[A^T A = \begin{bmatrix}
24 & 6 \\
6 & 14
\end{bmatrix}\]
\[A^T \vec{b} = \begin{bmatrix}
0 \\
4
\end{bmatrix}\]
The reduced row echelon form (RREF) of \(A^TA \vec{x} = A^T\vec{b}\) is
\[\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}\]
\end{solution}